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FOREWORD

Source-free Maxwell equations are derived for an electromagnetic (carrier) wave
in an inhomogeneous medium exhibiting nonstationary linear response. The
non-stationarity is assumed to be slow in comparison with the carrier oscillation,
and the equations that result assume that time-derivatives of all slowly varying
quantities higher than the first order can be neglected. The equations form the
theoretical basis of analysis of the nonlinear dynamics of the coupling of laser
energy into a fluid, for the case of laser intensity below threshold for air

(plasma) breakdown.
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CHAPTER 1

INTRODUCTION

The physics of laser induced sound in liquids is divided into two parts,
the coupling of the electromagnetic energy of the light field into the fluid to
create a disturbed region, from which acoustic energy is rradiated, and the pro-
pagation, subsequently, of the radiated acoustic wave. In this report, I present
a brief examination of a nonlinear aspect of the first of these problems, for the
case of surface absorption.

Broadly, two principal coupling mechanisms of laser energy are absorption
by particulate impurities in the liquid, and absorption by dielectric loss.
Depending upon laser intensities and wavelength, dielectric loss in the fluid
may also entail dielectric breakdown. Particulate absorption1 and breakdown2

each has been observed in focal regions beneath the liquid surface, for water
using ruby lasers (X = 0.6943 wm). Miniature volume explosions result in the
production of acoustic energy. Early reported observations of laser-induced
sound, again using a ruby laser, appeared consistent with simple linear dielectric
absorption below threshold for fluid breakdown, leading to thermal generation of
an acoustic stress wave.

3

* Early investigations also proved the utility of Nd:glass (X = 1.06 pm) and of
C02 (X = 10.6 pm) lasers; in addition, dyes have been used to control the optical
absorption constant. 4 The linear optical absorption length,

a- 1 = I , ni = Im n (1.1)

where n is the complex refractive index of the fluid, varies with wavelength X
over as many as ten orders of magnitude in water. Thus in the visible region,
a-1 varies in water from a meter, or so, at the red end to several tens of meters
in the blue-green window, while in the ultra-violet, around 600X, it falls as low
as 100A(=0.01m). On the long wavelength side, for Nd:glass laser light at
1.06 Lim, a- 1 = 6.0 cm, and it falls precipitously again (though non-monotonically),
four orders of magnitude to 11.8 pm, at X = 10.6 pm (CO2).

IBell, C. E., and Landt, J. A., App1. Phys. Lett., Vol. 10, 1967, p. 46.
2Barnes, P. A., Studies of Laser-Induced Breakdown Phenomena in Water,
Ph.D. Thesis, Simon Fraser University, 1969.

3Carome, E. F., Moeller, C. E., and Clark, N. A., Appi. Phys. Lett., Vol. 4,
1964, p. 95.

4Gournay, Luke S., J. Appl. Phys., Vol. 40, 1966, p. 1322.
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Figure 1 shows the behavior of the real and imaginary parts of n as functions of

frequency, f = c/N, for water.5 Note the strong absorption band centered at
= 2.950 rn, where ~-1-0.840 pm; see Figure 2 taken from recent reported data

in the infrared. 6 From tabulated data in Ref. 6, the refractive index of water
at \ = 2.950 , m is n = 1.317+0.282i, and at N = 10.6 pm, n - 1.18+0.075i.

For small values of - 1 , penetration of light into the medium is effectively
blocked, and the region of disturbed fluid is confined to a thin surface layer.
In the CO2 laser case, where X10a- - - 3 cm, 3.10 j/cm 2 is the minimum value for
time-integrated impulse laser intensity necessary to vaporize one absorption
depth of water from room temperature (20'C).7 The first reported CO2 laser-induced
sound study in water is due to Bunkin, et al7 , who observed surface vaporization.

S. lVaporization also had been observed previously under other conditions by
Gournav.4) Numerical calculations were performed subsequently by Feiock and
Goodwin,8 who used a one-dimensional hydrocode for an equilibrium vaporization
model, which included an inhomogeneous Beer's Law that assumed proportionality
of ' to -, where , is the (liquid-vapor) medium density.

In fact, surface vaporization, for modest conditions of laser intensity and
time-history, is readily achieved and is explosively sudden. A strong air shock,9

P/P0 = 47 bar, was formed above the water surface by absorption of a 1.67j CO2 TEA
* laser pulse (150 ns FMIM) having a film burn diameter 0.80 cm. The spot diameter

on the water surface, as .!-fined by the extent of maximal fluid disturbance
(shadowgraph pictures) was 0.68 cm. The corresponding laser fluence (intensity
impulse) is 1.67/7-x 0.682 - 4.6j/cm2  an uper limit estimate only slightly
above the threshoid scale value of 3. c cited earlier for vaporization of
one absorption depth.

The weak coupling case of low-level laser input, where only thermal
expansion will occur, but no surface vaporization, gives acoustic pressures
proportional to K/Cp, where K is the volume coefficient of expansion and C the
specific heat of the fluid. For water, K = 2.1xlO-4(Ko) - , and Cp = 4.2j/g-K*,
giving K/Cn 4. 7x10-1 2(cm/sec)-2 . For benzene, the same quantity has the value
62. 3xl0-12cm/sec)-2, which is an order of magnitude larger. The physics of

* .laser-induced thermoacoustic effects has received extensive treatment in recent
(Soviet) literature, and has been reviewed recently by Lyamshev and Sedov.

10

-.J

Gournay, Luke S., J. Appl. Phys., Vol. 40, 1966, p. 1322.

- Jackson, J. D., Classical Electrodynamics (2nd Ed.) (New York: John Wiley &
Sons, Inc., 1975), p. 291.

S6 )wning, Harry D., and Williams, Dudley, J. Geophys. Res., Vol. 80, 1975,
p. 1956.
Bunkin, F. V., Karlov, N. V., and Komissarov, V. M., Soy. Phys.--JETP Lett.,
VW I. 13, 1971, p. 341.

Feiock, F. D., and Goodwin, L. K., J. Appl. Phys., Vol. 43, 1972, p. 5061.
9
Bell, C. E., and Maccabee, B. S., Applied Optics, Vol. 13, 1974, p. 605.
1.vamshev, L. M., and Sedov, L. V., Soy. Phys.--Acoustics, Vol 27, 1981,
P. 4.

2
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in contrast, theories of the surface vaporization processes, also reviewed
very recently, by Lyamshev and Naugol' nykh'll -- who include the topics of
nonlinear thermoacoustics and optically induced dielectric breakdown, as
well -- are much less well-developed. Two cases (at least) have to be distin-

guished: (1) High laser intensity, where a plasma is formed above the surface.
In the model of Pirri, 12 sensibly all of the energy absorption occurs in the

- plasma, which forms the leading edge of a detonation front (laser supported
detonation wave) that advances in the opposite direction to that of the laser
beam propagation. The force delivered to the water surface is the result of

shocking the air to high pressure. (2) Low laser intensity, where rapid and
sustained vaporization occurs, but no plasma front is created. In this case, the
laser energy deposition goes directly into the vapor and the liquid. In both

"- cases, a flow field must be determined in order to predict the full fluid
disturbance from which the acoustic pulse is radiated; 13 both the absorption and
stress coupling processes in the two cases are different. I will not consider
case 1 here, but only case 2.

It is not clear that the flow in the vaporization process is steady since
* the vaporization layer itself will be no more than a few molecular diameters

thick, and is probably unstable.14 The absorption properties of the vapor and
heated water to the incident light will vary with time and with space through the

* density and temperature dependence of the electromagnetic response functions
(dielectric constant), even without a surface instability of the vaporization
layer. So, the complete laser field will be affected in the fluid. Except for
approximate allowances for dielectric inhomogeneity (e.g., Ref. 8), this aspect
of the laser-liquid coupling problem appears not to have received any attention,
so far; that aspect is the subject of the present report. The main purpose of
an investigation of this kind is to search out and identify mechanisms for
optimizing laser energy coupling. Accordingly, I will not restrict the analysis
to the case of 10.6 pm radiation in water, exclusively, but will be concerned
more generally with nonlinear time-dependent dielectric coupling dynamics,
broadly appropriate to the surface evaporation process.

The plan of the report is as follows. In Section 2, I specify the physical
basis of the equations to be derived subsequently, which is the constitutive

-" relation for adiabatic non-stationary response of an inhomogeneous, local
dielectric. In Section 3, I derive the source-free Maxwell equations, for a
medium defined in the previous section. In Section 4, I develop the slow time-
scale approximation scheme and derive equations of the evelope fields of a pulse

Lyamshev, L. M., and Naugol'nykh, K. A., Sov. Phys.--Acoustics, Vol. 27,
1981, p. 357.

12 Pirri, Anthony N., Phys. of Fluids, Vol. 16, 1973, p. 1435.

"1Lighthill, M. J., Proc. Roy. Soc. London, Vol A211, 1952, p. 564, and

Vol. A222, 1954, p. 1. See also Robert T. Beyer, Nonlinear Acoustics,

written for the Naval Sea Systems Cotiiiand, 1974.
14
Anisimov, S. I., Tribel'skii, M. I., and Epel'baum, Y. G., Soy. Phys.--
JETP, Vol. 51, 1930, p. 802.

[175
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wave with a high frequency carrier. In Section 5, 1 specialize these equations
to the case of a one-dimensionally stratified medium, and appropriate to a wave
incident normally in the fluid. I also give a short physical discussion of
limiting cases, leaving the more detailed analyses needed,for later. In Section
6, 1 summarize the report, and make a couple of concluding remarks.

% .
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CHAPTER 2

* CONSTITUTIVE RELATION

The complex dielectric function for water is a function of density p, and of
temperature T also. This can be significant in the surface regions especially,
and at the vaporization front. Thermal and hydrodynamic response to the laser
field create spatial inhomogeneity and time-dependence (non-stationarity) of
medium response functions so that the linear (and local)* dielectric displacement
is given by

D(,,t) = dt' E(x,t;t-t')E(x,t'). (2.1)

The time-scale for the explicit t-dependence shown for c is that for variation
of p and T, and will be assumed very long and slow in comparison with the laser
(carrier) period f-1 = A/c = 0.03 ps, for X = 10.6 pm. If the t-dependence of
may be regarded as adiabatic, we may write

(x,t; t-t') ; (Q~'T; t-t') (2.2)

where the quantity on the right hand side is the response function for a
stationary medium, having density and temperature given by the values in the
fluid at time t. The explicit (x,t)-dependence required is then assumed to
enter through that realized in the dynamics of the fluid for p and T; viz.
=p(gt) and T=T(l,t). Eq. (2.1) now becomes

D(x,t) =fdt'c(p)(x,t),T(x,t);t-t')E(x,t') ( .a

- E.op (o,T)E, (2.3b)

where cop denotes the integral operator in the first equation. The limitation to
the validity of the quasi-static approximation, -qs. (2.2) and (2.3), cannot be
assessed without a microscopic (molecular radiator) theory of the laser field
absorption process, which is outside the scope of the present analysis from
assumptions of classical response.

\*

In eq. (2.1), more generally, an integral over x' is also present; but for
local response, the most general (linear) Kernel is proportional
to6( 3) (2-?'), which results in eq. (2.1).

7

,, ., ?,- . €',-_-,............-..-........................-................""..."......."."...."................. ,j"--' .',
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For a stationary medium, with p,T independent of t, Eq. (2.3) is a
convolution, so its Fourier transform with respect to the time is

D(1,w) = E(p,T;w)E(x, w), (2.4)

I* - with an obvious notation; in particular e(p,t;w) is the Fourier transform of the
right side. of Eq. (2.2), but with pT independent of t. When explicit t-depen-
dence from medium response is present in E, Eq. (2.4) does not follow from
Eq. (2.3).

Finally, the dc-conductivity a depends upon the thermodynamic state of the
fluid also, a=o(p,T), and

J (x, t) = a (p(x, t) , T (x ,t)(E(xjt) (2.5)

is the quasi-static model analogue of Eq. (2.3).

The electromagnetic fields of the laser wave in the fluid will have a fast
and a slow time-scale (envelope) part, and equations for the latter will be
derived. Preparatory to attendant labors of this effort I list a few relation-

*. ships issuing from eq. (2.3). The simplest is

* VxD = Vc op(p,T)xE + op(p,T)VxE, (2.6a)

- where the meaning of the first term on the right side is

VEo (p,T)xEE =dt'VS(p(x, t) ,T(x,t),t-t')xE(t') . (2.6b)
* op

If E = 0 at t---, differentiation of eq. (2.3a) gives

.o (p ,T)
3- D .E + Eo(p,T) (2.7a)a' t at opt' (.a

where

36 o (P,2T) t
E° 'dt) x, t) ,T (,t); E(t, )  (2.7b)

,-. 9t a t

in which t-t' is held fixed for the derivative of ;. Various further relations

8

6I
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follow similarly, such as,

(Vce XE) =- 2  xE + V x-(.8
tat I op atT(.8

In what follows, I will suppress the p,T dependence of cop in the notation, and
I will drop the "op" suffix as well.

Finally, I also need the inverse of the integral operator c, which I define
by

E (t) =-(: D) (t) Ef dt Ic (p,T;tt'Dt) (2.9)

Substituting Eq. (2.3a), and denoting t'-dependence by primes on P and T,

Et =fdtfdt"J'(p,T,t-t)c(p',T;t-"E(t") (2.10)

whence, since E is arbitrary,

j dt' E- (p,T;t-t')E^(P',T';t'-t") = (-".(2.11a)

Similarly, starting from D = EE, one finds

fdt'Es(p,T;t-t t )Ec (p',T';t'-t") =6(t-t"). (2.11b)

Notice that

fdt: IJ'(p ,T;t-t')es(p ,T;t 't) (-t") (2.12)

unless Dp/ t = 0 and 3T/3t =0; this parallels the remark made earlier concerning
Eq. (2.4). Notice also that the left sides of Eqs. (2.11) are not convolutions.

9

% % . 5*S
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Note, finally, that Eq. (2.11), which I may write more cconomically as

-1
C C op (2. 13)

* implies

VE - CE -E- .VE, (2. 14)

since 5(t-t") has no x-dependence. In the same way,

01
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CHAPTER 3

FIELD EQUATIONS

Taking the curl of

VxE = i B (3.1)
c 3t'

and using

'"4ro 1 3D
VxB = r E + -- (3.2)•c c at,

gives

V2 E - -L-T 3- (uE) 1 a2D V(V.E) (3.3)

c2 at c2 at
2

2
Here vxVx---V +V(V.) has been used. Similarly, Eq. (3.2), together with V-B = 0,
gives

*2 4Tr1a
V2B - - Vx(oE) - ! (VxD) (3.4)

' cc at

To throw Eq. (3.4) into a wave equation form, I have to manipulate the last
*i term, making liberal use of Eqs. (2.3) - (2.9). Using Eq. (3.1), Eq. (3.4)

4ir (cE 1 a3S
2i 4 1 - (VFxE + cvxE), (3.5)

2- C at
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reads

V2 B ca2 B 41T VaE I"CE Ie aE 1 j ae aB

2 2 c c VxtaE) c a- t 2 at at' 36
c at c

For the third term on the right, I use Eq. (3.2), with Eq. (2.3), to write

1 DaE -l(L 3E=V. :-) S E

= s -1 X(XB 4 a ~.E) 37

while for the first, I use Eq. (3.1), and have

--Vx(aE) = - 4x aB (3.8)
c c 2 at

Substituting these into Eq. (3.6), one arrives at

(2 at x I 1 r32/ at xxB at

iV / a +\ lV-l(4IT + k~xE (3.9)

A somewhat less involved treatment of Eq. (3.3), but along the same lines, gives

-(- 4n E+ 1 2 ) at V(V.E)

47t a2 L2 E. (3.10)

12
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L.s. (3.9) and (3.10) are exact consequences of Maxwell's equation for a
nonstationary inhomoheneous medium characterized by constitutive relations
defined by Eqs. (2.3) and (2.5). The special case o-0 and 3c/3t-0 gives the
field equations,

2 . " B ( 1V x xB = 0 (3.11)

2 o 2

(2 E. - vvE 0, (3.12)
c 2 t 2) 0

which agrees with standard textbook results for stationary media.15

151andau, L. D., and Lifshitz, E. M., Electrodynamics of Continuous Media,
(Reading, Massachusetts: Addison-Wesley, 1960), p. 284ff.

13/14
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CHAPTER 4

SLOW TIME-SCALE FIELD EQUATIONS

I denote the laser frequency now by w, and write the fields as

E = Re(E exp-iwt) (4.1)

B = Re(B exp-iwt), (4.2)

where E and B are spatially and (slowly) time-varying complex envelope fields.
In Eqs. (3.9) and (3.10) it is necessary to evaluate several integral operator
expressions, such as

=2E E Ret Ia2(p,T;t-t e E(t'), (4.3)
2 t2at at2

where I have suppressed the --dependence of E. The right side of Eq. (4.3) has
the general form

.Re e - i W /hT(pT;T)e iWT E(t-T ,(4.4)

[. where I have changed variables with t'=t-T. Expanding E about T=O gives the
* quantity in the square bracket formally, with E(n)(t)fnE/atn, as

i!S

r'.

I, .-- - . '. '*,. . ' . .. *- *j.*' '' '' , '.- .' - - -' ' ' 'F - ''w*' '.
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e it E (wt) Edfl(-T) e Jhre1ThT

n=o dw'

iWt [EthpTw . dh(p,T;w) (4.5)
-. =e Wa t w dw

where h is the Fourier transform of h. Thus, for Eq. (4.3),

h =h (p,T;w) a 2 c(pT~w) .(4.6)

a

In Eq. (4.5) the ratio of the second term to the first is of order (wt) where
t is a time-scale for significant variation of E; since this ratio is extremely
small for the adiabatic conditions of the problem, only the first term has to be

* retained. In this way, Eq. (4.3) becomes, to very good approximation,

where I have written e(w) for E~pT;w) to simplify notation.

16
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Similarly, the term containing aE/a t in Eq. (3.10) involves an expression
of the form

e e- dTh(pT;T)e ( +) E(t-T)

-in ) i (n) (t) d 'h(pT;w) (4.8)= e n! d n I

where now h = ac/at, while the a 2E/t 2-term involves

-iWt. in 2 a a2 (n) dnh(p,T;w)
e n=o n -"  I-- T- at2) - (t) d n

in which h = e. The lowest terms in Eq. (4.8), out to the same order as the
a 2cl, t2 -term in Eq. (4.7), include the , = 1 coefficient of -iw, so that

a = aE = -i w __ Re dt (4.10)
a t a t et dw at '

while, again to the same order, Eq. (4.9) gives

at = Re e w 2(w)E - 2ita + W30C (W) -

(1 + 2wd- + V d] (4.11)

17
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I neglect terms involving the second time derivatives of adiabatically
varying quantities from here on. Collecting results, Eq. (3.10) finally
reduces to

""2 2 (E)
S+W E (W) E -V(.E)

2iw d 8E
1 + d c(w) = 0 (4.12)

where

- () W E(w) + (4-r+ ) 3 -- 4T a. (4.13)

Three of the terms in Eq. (3.9) for the magnetic field involve compositions
of integral operators; in addition, they all involve c-1. Each of these features
results in further complications requiring special attention. The term containing
VxB, on the left side, involves

(V"' . ) x curl B = Reft'"(e. 1 (t,t-)

-iwt (4.14)
x curl e

-i t" B (t-'),

Eq. (3. 10) asserts the vanishing of an expression of the form R(e F),
where F is the left side of Eq. (4.12). Since F is sensibly constant for
variations of t on the scale of w-1 this condition evaluated at t = 0 and

* . t = ir/2w implies the separate vanishing of real and imaginary parts of F,
whence follows Eq. (4.12).

18
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where

Ve E ftt)E dt've (p,T;t-t') C (p',T;t'-t) (4.15)

Proceeding as before, with the variable change t"=t-T, and with the Taylor
series expansion for B(t-T),

(E E )x curl B =Re eiwtfdT(VE: ')(t,t-T )el~ x. curl B(t-tc)j

=Re Feiwt 14i1.(fd Teiw (VE E: l)(t,t-T)~

n=0 n./w

x curl B (n) (t)]. (4.16)

19
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andttui ofq. (4.15), with some arranging of the arguments of the exponential,

iW Iw iw tl

=Id t e 1V7 (p,T;t ) I cT e 1

Jl 1 1 1)

d 1

dt e (p, T; ti

J~~r~X 1j' E (eTt) E- (w) 4.18

at

20
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Eq. (4.17) takes the more economical form

iW

fdTe (V. - ) it,t-T)

-
in dn 7 (W) () (4 19)n! n a t n "

As noted earlier, Eqs. (2.11) do not have the form of convolutions, a
consequence of which is that c-l(w) j l/E.(w), as would be the case for stationary
medium response. Starting from Eq. (2.11a), with t'- = t-Tr, the analysis leading
to Eq. (4.19) can be applied, mutatis mutandis, to give

1= in d n -(w) - ( ) (4.20)

n! dw n  3t

from which a formal expression of E-i(w) can be cznstructed recursively. In the
lowest order, adiabatic approximation, Eq. (4.20) reads

Ed -1 (W)c(W) de- 1Il ) DC(W) (4.21)::', ( )a( - - i dw "a t '

so that

E 1 ( ) 1 i d E:(w (4.22)

which is sufficient for purposes of the present problem. Eq. (4.20) and
Eq. (4.22) both reduce to the stationary medium result in the limit of E(w)
independent of t.

21
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combining Eq. (4.19) and (4.22), one has

JdTe IWT -1-i dw E1 \3(W)1(V E: J(~-) VE(d)
C: (Wt (w dt

(w) 1c -V(w) (4.23)

* for use in Eq. (4.16); substituting, one arrives, after a little algebra, at

VE-- xcurl B :E Re le '- 1( VE:(w)x curl B(t)

-i - WVlog c~w (w) x curl B (t)

i L-( log E(u) x curl dB(4.24)

That leaves the last two of the four terms on the right side of Eq. (3.9).
The first of these is similar to (4.16),

(VC.Cl xaE = Ree iWt fdT VE.- -1 (t,t-T)e iWT XC t T)E t T)

n~.f I n 4.5

ReItd-fTeiW V:C-(~-

22
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whence, with the aid of Eqs. (4.19) and (4.22),

(V - E. I xaE ="Re e - iW t L.. yV a(w)xE

-iG log ()d v (log (w))xE + iL log C(j x -(aE (4.26)
at dw \ / d

The remaining term contains a product of three operators; but it is also already
of first order smallness in the adiabatic regime. One has

•VE:- -- -tx Re e- d're E • (t,t-T)

* xE(t) + .,(4.27)

with

fi iw 1.1t-

[%.t

3 CE(W)

C 1W V E(W) at + .*,(4.28)

23
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so that

V' -1. x E=Ree- ~ a(W) Vlog c(w) xE (t(4.29)a t a at

The equation to be satisfied by B(t), analogous to Eq. (4.12) for E(t), can
be written down directly after substituting Eq. (4.2) into Eq. (3.9) by making
use of the foregoing results, viz. Eqs. (4.11), (4.24), (4.10), Eq. (4.5) with
h= aE W)/at, and Eqs. (4.26) and (4.29). That equation is

[V2 + ~2 6(B) ()]B + ( D l aog E (W) Lp Vlog c~w) x curl B

+i lj.Qog C(w))x curl 1 .~( + - Wih.

=a(c,a) x E +b(c,a) x-- (430

where

E(B) (W) E:(W) + i( 4 , + aF-(w)) (4. 31a)

a~c~cW a - t?+2 1+~alge~

* ~.aod - £ log (w) (4d3ba( ffvlog a w jaTV (W

Vvo lo (W C - wI). : W (4.31b)

cdw

* Eqs. (4.12) and (4.30) are the slow time-scale equations of the wave. No
approximations have been made regarding spatially varying properties of the medium.
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CAPTER S

ONE-DIMENSIONAL MODEL

I assume a one-dimensionally stratified fluid now, for which e depends
-significantly upon only one of the three spatial variables, z, so that

^ (5.1)

where z is a unit-vector along the positive z axis (downward into the fluid, let
us say.) Eqs. (4.12) and (4.30) are consistent in this case with vanishing
j - components of the field amplitudes. Assuming Ez= 0, one can derive V. = 0
from -.D = 0; one has

7V (EE) = VC-E + E V.E = 0 (5.2)

- so that

V.E = - 1 F--c.E = 0, E = 0. (5.3)
z

From Eq. (5.3) and Eq. (4.1), Eq. (4.12) then becomes

V2 + LE(E) (W) E + L!.w(I + (w _d (5.4)
w 2 2- c (W ) @t 0

-6

with a similar equation for Ey. I consider here only the case that the direction of
E is constant and uniform, hcwever, which I take now to be the x-axis,

E E x, E 0 0. (55)
x y

25
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Then Eq. (4.30) supports solutions,

6B B , Y^ y ZXX. (5.6)
y

From B =0,

z3

V log e(w) x curl B - lg (W) y(5.7)az az

with a similar equation for the curl B/'a t) -term in (4.30). The equation that
*results for B3 i s

y

2 a lo E(w) d a3 log E: ) -0 21

tdw a z aza 2 at
CC

+ ~~a b (E&,c) E .(5.8)x

Eq. (5.4) for Ex~ is readily interpreted. Its time-independent form, with
also a 0, is

* (V E: (W- c EX 0, (5.9)

by Eq. (4.13). This is the usual time-independent "Schrbdinger" equation for
*propagation in an inhomogeneous medium, with e playing the role of (optical)

potential. The eikonal, or WKB approximation to Eq. (5.9), for the case
V2 .+ 

2/;z 2, is

EX exp ko dz(5.10)

5. 26
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%where k )/c and Exo is a constant, and where the positive square root (forward
propagaying, damped solution) is understood. When the WKB approximation is invalid,

• which is the case of significant z-dependence of c on the scale of c/w = k--
the solution, Eq. (5.10), no longer holds, and Eq. (5.9) has to be solved explicitly.
Finally, in Eq. (5.4), the time derivative term reflects a wave dynamical effect
associated with medium non-stationarity.

Eq. (5.8) for B is more complicated, a situation also true in the time-
independent, stationary medium limit. In the latter case, with also a = 0 again,
Eq. (5.8) becomes

2 - l ( 2 ( )) 3 = . (5.11 )

c 
Y

- :The substitution,

S I-- (5.12)
y y

eliminates the 3, z terms from (5.11) giving

(2+ -2 '(w )B = 0, (5.13)

c

the same form as Eq. (5.9), but with now

_ c(W) + c2 [1 alog c:(W)- (a log F(w) )2](514W" 2 3z 2  4

. this recovers the text-book result again, 16 including the equality "- 6 in the
-" eometrical optics approximation. For nonstationary media, the substitution of

16Landau, L. D., and Lifshitz, E. M., Electrodynamics of Continuous Media,
(Reading, Massachusetts: Addison-Wesley, 1960, p. 284ff.
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(5.12) does not accomplish the same effect owing to the presence of the cross-
derivative, 32/t3z-term in eq. (5.8).* Evidently also, this term reflects an
additional coupling effect between medium inhomogeneity and nonstationarity.

". Eqs. (5.4) and (5.8) have a somewhat different charactor due to the
cross-derivative term in the latter. But the former is closely related to the

*. equation for propagation in a medium with spatially nonuniform gain, viz.

-2 k e -e ikGe, (5.15)

2 2 2 2 2
where V. = + D /3y , e = e(x,y,z) is the envelope emplitude and G G(x,y,z)

- is the gain function. Eq. (5.15) has recently been solved analytically, for
* specified G, by B. N. Perry, et al., 1 7 and techniques introduced by these workers

should be useful for limiting model forms of eq. (5.4).

Eqs. (5.4) and (5.8) both should be amenable to treatment in a WKB approxi-

mation at least, which will shed further light on the physical nature of essential

effects associated with medium nonstationary. I plan to do this later.

.1.

*The substitution that does it is B =u8 with u being a solution of

2 u+ 1,1 - + aiu = 0,

where a is the coefficient of 3 B /)z and b the coef ficient of 32B/ t
1 y o

17Perry, B. N., Rabinowitz, P., and Newstein, M., Phys. Rev. Lett., Vol. 49, 1982,
p. 1921.
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CHAPTER 6

SUMMARY AND CONCLUSION

I have derived slow time-scale source-free Maxwell equations for a nonstation-
ary, inhomogeneous medium, assuming a high frequency carrier and slowly varying
response functions for the medium. The electric and magnetic complex field
amplitude equations are Eq. (4.12) and (4.30).

In nearly all work done on the physics of the coupling of laser energy into
fluid, the complex dielectric function e(w) is assumed spatially uniform and
constant. In fact, it is a function of fluid temperature and density, which in
many practical cases are functions of position, with steep spatial gradients,
and of time. Where the assumptions of homogeneity and stationarity have not been
made, as in Ref. 8, a WKB approximation has been used. The equations derived in
the present report are designed to permit exploration of effects for energy

S-" coupling dynamics of these factors.
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